Name: \qquad
Date: \qquad Period: \qquad

Lab Activity: Earth's Motions

INTRODUCTION:

The earth revolves around the sun in an orbit which is a special geometric figure called an ellipse. An ellipse has two "center points". Each one is called a focus. The Sun is not in the exact middle of the earth's orbit, rather the Sun is found at one of the focal points.

OBJECTIVE:

You will create an series of ellipses and compare the shape of the Earth's orbit and orbits of other planets with the shape of a circle.

VOCABULARY:

Ellipses -

Focus [foci] -

Major Axis -

Circle -

Line -

Lab Activity: Earth's Motions

PROCEDURE:

1. Carefully cut out the Ellipse Worksheet located on page 26.
2. Place the Ellipse Worksheet on three pieces of cardboard and place a thumbtack in each point labeled \#1.
3. Loop the string around the thumb tacks and draw the ellipse by placing your pencil inside the loop and label this ellipse \#1.
4. Measure the distance between the thumbtack holes. Record this as "d" on your Report Sheet.
5. Measure the length of the major axis. Record this as " \llcorner " on the Report Sheet.
6. Move each thumbtack to the points labeled \#2 and draw a new ellipse. Measure and record the distance between foci and the length of the major axis for ellipse \#2.
7. Move each thumbtack to the points labeled \#3 and draw a new ellipse. Measure and record the distance between foci and the length of the major axis for ellipse \#3.
8. Move each thumbtack to the points labeled \#4 and draw a new ellipse. Measure and record the distance between foci and the length of the major axis for ellipse \#4.
9. Place one thumbtack at the pointed labeled \#5 and draw a new ellipse. The distance between the foci is 0 . Measure and record the length of the major axis for ellipse \#5.
10. Using the equation below, calculate the eccentricity [e] of each of the five figures. Show ALL work on your report sheet. Round your answers to thousandths place.

$$
\text { Eccentricity }=\frac{\text { distance between focus }}{\text { length of major axis }}
$$

Lab Activity: Earth's Motions

	REPORT SHEET
Ellipse \#1	Calculations:
$d=$	
$L=$	
$e=$	
Ellipse \#2	Calculations:
$d=$	
$L=$	
$e=$	
Ellipse \#3	Calculations:
$d=$	
$L=$	
$\mathrm{e}=$	
Ellipse \#4	Calculations:
$d=$	
$L=$	
$e=$	
Ellipse \#5 [circle]	Calculations:
$d=$	
$L=$	
$e=$	

Lab Activity: Earth's Motions

DISCUSSION QUESTIONS:

1. As you increase the distance between the foci, what change takes place in the eccentricity?
2. Which of the four ellipses you drew [not counting the circle] was the most eccentric?
3. Which of the four ellipses you drew [not counting the circle] was the least eccentric?
4. What is the minimum eccentricity an ellipse can have and the name of that geometric figure?
5. Where is the sun located on a diagram of the earth's orbit?

CONCLUSION: Describe the true shape of Earth's orbit?

