Name: _____

Date: _____ Period: _____

Foundations Earth Science

Lab Activity: Density and Percent Error

INTRODUCTION:

Density is the term used to describe the relationship between the mass of an object and its volume. Under given conditions of temperature and pressure, the density of a material is constant. The density of any earth material can be determined by measuring its mass and volume and using the equation in your Earth Science Reference Tables.

OBJECTIVE:

You will be able to calculate the densities of materials and the accuracy in your measurements.

VOCABULARY:

Mass

Volume

Density

Displacement

Percent Deviation

Lab Activity: Density and Percent Error

PROCEDURE A:

- 1. Find and record the mass of each object using an electric balance to the nearest tenth.
- 2. Find and record the volume of each object, to the nearest tenth, using one of the following:
 - The metric ruler and the equation $V = L \times W \times H$
 - The graduated cylinder and the water displacement method
- 3. Calculate the density using your measurements for mass and volume. Be sure to round your answer to the nearest tenth and include proper units.

Aluminum Bar	Aluminum Cube
Mass =	Mass =
L = W = H =	L = W = H =
Volume =	Volume =
Density [your value] =	Density [your value] =
Steel Sphere	Glass Sphere
Mass =	Mass =
Initial = Final =	Initial = Final =
Volume =	Volume =
Density [your value] =	Density [your value] =

REPORT SHEET

Lab Activity: Density and Percent Error

PROCEDURE B:

Use your density calculations from Procedure A and the accepted densities provided to calculate percent deviation on your measurements. Record your answers on the Report Sheet below.

REPORT SHEET

Aluminum Bar	Aluminum Cube
Your Value =	Your Value =
Accepted Value = 2.7 g/cm^3	Accepted Value = 2.7 g/cm^3
% Deviation =	% Deviation =
Calculations:	Calculations:
Steel Sphere	Glass Sphere
Steel Sphere Your Value =	Glass Sphere Your Value =
Steel Sphere Your Value = Accepted Value = 8.0 g/ml	Glass Sphere Your Value = Accepted Value = 2.4 g/ml
Steel Sphere Your Value = Accepted Value = 8.0 g/ml % Deviation =	Glass Sphere Your Value = Accepted Value = 2.4 g/ml % Deviation =
Steel Sphere Your Value = Accepted Value = 8.0 g/ml % Deviation = Calculations:	Glass Sphere Your Value = Accepted Value = 2.4 g/ml % Deviation = Calculations:
Steel Sphere Your Value = Accepted Value = 8.0 g/ml % Deviation = Calculations:	Glass Sphere Your Value = Accepted Value = 2.4 g/ml % Deviation = Calculations:

DISCUSSION QUESTIONS:

- 1. What is the effect of shape on the density of samples of the same material?
- 2. If the aluminum bar is cut in half, what is the density of each half compared to the original?
- 3. Of the three phases of matter, what phase has the greatest density for most substances?
- 4. Water is an unusual earth material because it is denser in which phase?
- 5. How would additional water on the pan of the balance effect your density calculation?

CONCLUSION: Describe the procedure for determining the density of earth materials.